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ABSTRACT: In this work, we study the real-time dynamics of the charged hairy black
hole with the time-dependent source of scalar field in asymptotically anti-de Sitter (AdS)
spacetime. The numerical results reveal a novel descalarization mechanism. In order to
obtain the hairy black hole as the initial data for the quench process, we first analyze the
quasi-normal modes of the massive complex scalar field on the Reissner-Nordstrom anti-de
Sitter (RN-AdS) black hole background. We find the dominant unstable modes for large and
small RN-AdS black holes come from the zero-damped modes and AdS modes, respectively.
Then, the unstable RN-AdS black holes are perturbed to trigger the transition to hairy
black holes. With the hairy black hole in hand, we specify a time dependent scalar source for
the system. As the source is turned on, the electric charge, energy and scalar condensation
of the system start to oscillate with the entropy increasing monotonically. Finally, with the
decay of the scalar source, the system gradually settles down to a new state. Interestingly,
the final state of the evolution could be a hairy black hole with less scalar condensation,
a RN-AdS black hole or a Schwarzschild-AdS black hole, which depends on the quench
strength. However, as long as the quench strength is large enough, the system always loses
all the electric charge and converges to the Schwarzschild-AdS black hole.
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1 Introduction

In general relativity, a stationary black hole in electrovacuum asymptotically flat spacetime
can be totally characterized by its mass, angular momentum and charge [1]. However,
in the presence of non-linear matter sources or in many alternative gravity theories, a
variety of black hole solutions owing further characters, which are collectively referred to
as hairy black holes, have been found [2-8]. Among these, the black holes with scalar
hair have attracted much attention in the last few decades. Especially, it was found that in
asymptotically flat spacetime, Kerr black holes suffer superradiant instability under massive
free complex scalar field perturbations and develop into hairy black holes [9, 10]. These
hairy generalisations of the Kerr solution bifurcate from the zero modes of the superradiant
instability, which often indicate the existence of superradiant bound states [11]. Akin to the
rotational superradiance of Kerr black hole, the charged superradiance happens to Reissner-
Nordstrom (RN) black holes [12]. However, the RN black hole can not support the complex
scalar hair since no zero modes or bound states exist in asymptotically flat spacetime. The
situation is changed when the charged black hole is placed in a cavity [13, 14] or in an
asymptotically anti-de Sitter (AdS) spacetime [15-18], in which the RN black hole becomes
unstable and develops into a stable hairy black hole.

The superradiant instability of RN black hole requires confinement due to the AdS
boundary or a reflecting mirror enclosing the black hole [19, 20]. On the other hand, besides



the superradiant instability, the extremal RN-AdS black holes further have the near-horizon
condensation instability when the effective mass of the scalar perturbation is smaller than
the Breitenlohner-Freedman (BF) bound of the near-horizon AdSs geometry [21]. The near
horizon instability has been studied extensively in the context of gauge-gravity duality such
as holographic superconductors and superfluids [22-24], and is sometimes referred to as the
IR instability. The near horizon geometry of the near extremal black hole gives a collection
of zero-damped modes whose frequencies cluster onto the real axis in the extremal limit [25—
27]. The interplay between the superradiant instability and near horizon instability of the
RN-AdS black hole has been studied in [18, 28]. In this work, we will disclose further
the dominant unstable modes for large and small RN-AdS black holes. We find that IR
instability is suppressed in small RN-AdS black hole, while the superradiant instability
plays a role in both large and small RN-AdS black holes.

The near horizon instability is a kind of tachyonic instability, which has prompted a
flurry of activity on the black hole spontaneous scalarization recently [29-37]. The nonlinear
studies on the time evolution of the black holes confirmed that the resulting black holes are
scalarized [38-44]. On the other hand, the scalar hair of the hairy black hole can be removed
through some dynamical processes. The first mechanism for descalarization was realized in
the binary black hole merger [45-47]. However, these works were limited in the decoupling
limit where the nonlinear scalar equation of motion was only evolved on the background
from general relativity. Then another mechanism for descalarization by accretion was intro-
duced in [48-53]. These works considered the full nonlinear evolution of black holes under
large perturbation. The scalar hair exists only when the charge to mass ratio and coupling
strength are large for charged black holes in Einstein-Maxwell-scalar theories, or when the
mass to the Gauss-Bonnet coupling constant ratio is small for Schwarzschild black holes in
scalar-Gauss-Bonnet theories. In both theories, the dynamical descalarization occurs when
these ratios are changed to the parameter region where only bald black holes survive.

In these previous works, the dynamics were studied in the microcanonical ensemble
since the total mass and charge are fixed during the evolution. In this work, we introduce
a new mechanism for the descalarization by quenching a charged hairy black hole, which is
the endpoint of a superradiant unstable RN-AdS black hole under complex scalar perturba-
tion [17, 28]. We put the charged hairy AdS black hole in an open environment. By turning
on a time dependent source of the complex scalar field at the AdS boundary, we inject en-
ergy and charge into the bulk. This process decreases the charge to mass ratio such that
the scalar hair of the initial hairy black hole can be removed. The endpoint of this process
can be a hairy black hole with less scalar hair, a RN-AdS black hole or a Schwarzschild-AdS
black hole. If the quench strength is large enough, the system always loses all the electric
charge and scalar hair, and converges to the Schwarzschild-AdS black hole.

The organization of the paper is as follows. In section 2 we introduce the model we
considered. In section 3, we analyse the instabilities and the quasinormal modes of the
RN-AdS black hole under complex scalar perturbation. In section 4 we investigate the
nonlinear dynamics of the scalarization and descalarization. Finally in the last section, we
will summarize the obtained results.



2 Model

We consider the Einstein-Maxwell-Scalar system in the four-dimensional asymptotically
anti-de Sitter spacetime with the Lagrangian density

1 .
L=R=2\— Fu " - D,b(DF)* — m? )2, (2.1)

where D,, = V,, —iqA, is the gauge covariant derivative and the negative cosmological
constant is chosen to be A = —3 by setting the AdS scale L = 1. The mass of the scalar
field should respect the Breitenlohner-Freedman (BF) bound —9/4 < m2L? < 0 to make
the theory stable [21]. In this case, the scalar field has two branches of the convergent
asymptotic solutions near the boundary

P~ w(_)r_(g_A) + ¢(+)7“_A, r — 00, (2.2)

where the conformal dimension of the scalar operator satisfies A(A — 3) = m2L?, and its
discriminant gives rise to the BF bound. The coefficients ¢y and i are the source and

response, respectively. In what follows, we will take m?L? = —2 for definiteness to make
A=2.
In this model, the Einstein equation is
G = —Agu + T2, + ThL, (2.3)

where the stress-energy tensors of the gauge field and scalar field are
1 1
T;% = igngupFua - gFaﬂFaﬁguua (2.4&)
1 * * 1 * *
TY, = 5 DD + Dyb(Dyh)”] = 5 [Da (D) + m0u™ | g (24D)
The equations of motion for the gauge field and scalar field are

V,F" = qJ", (2.5a)
DFD,p = m*y, (2.5b)

where JF =i [¢p* DHip — 4 (DH1))*] is the Noether current of the complex scalar.
The RN-AdS black hole solves the field equations with metric

dr?

ds® = —f(r)dt® + + 12dQ3, 2.6
( ) f(’l”) 2 ( )
where Mo )
2 r
f(r)_l_T_'—@—i_ﬁ’ (27)
and Maxwell potential
A dat = (u — ?) dt, (2.8)

and with the vanishing scalar field. The parameters M and @ are the mass and the electrical
charge of the black hole, respectively. The constant p is a pure gauge, which is set to 0



in most of this paper. However, to study the near-horizon geometry of the RN-AdS black
hole in section 3.1, we will take u = Q/ry for convenience, where r is the outer horizon
radius. The Hawking temperature is given by

_ 1 / o 1 QZ 37’3_
T=_f (7«+)_4W+ (1—+L2>. (2.9)

Due to the positive definiteness of the Hawking temperature, we have

3r

2
Q< 2r\/1+ L2+ = Q.. (2.10)

On the other hand, the RN-AdS black hole can be described in terms of the inner and
outer horizon radius, r_ and ry, which are the real roots of the equation f(r) = 0. In this
case, the metric function is expressed by

fry=L2(r—r)(r—r )1+ 0y +r)r i+ (ri +72 4o+ LAr 2, (2.11)
from which we can get the mass and the electrical charge of the black hole immediately

1
M = §L_2(7“+ +r_)(rd + 02 + L2, (2.12a)
Q* =4AL 2ryr_(r3 + 12 +ror_ + L2). (2.12Db)

3 Instability

In this section, we take the complex scalar field with mass m and charge ¢ as a probe field in
the RN-AdS background. For the linear analysis, we take the Klein-Gordon equation (2.5b)
at the linear order

0=r72 (12f3%) = f 0800 + 2igA T 000 + (AT T =) ou, (3.)

where the prime stands for the derivative with respect to the radius r. The linear per-
turbations of the metric field and Maxwell potential have no contribution for the linear
order Klein-Gordon equation due to the vanishing scalar field in the background. We will
analyze this equation in various situations.

We begin with the IR instability and the superradiant instability of RN-AdS black
hole in subsection 3.1 and in subsection 3.2 respectively, which can trigger the transition
from a RN-AdS black hole to a hairy black hole. Then, we describe the continued fraction
method and persent the numerical results of the quasinormal frequencies in subsection 3.3.

3.1 IR instability

We have set the mass of the scalar field to obey the BF bound in AdS,4, which ensure the
asymptotically AdS, solutions are stable in the UV region. But so far, the behavior of
the scalar field in the interior of the spacetime is free. In particular, the structure of the
spacetime in the IR region may impose an additional constraint on the behavior of the scalar



field. For an extremal RN-AdS black hole with spherical horizon topology, the near-horizon
geometry is the direct product of AdSs with a sphere S?. So we expect that the system is
driven to a hairy black hole with the near horizon scalar condensation when the effective
mass of the scalar field at the horizon violates the BF bound in AdS,. Holographically,
the scalar condensation signals a second order phase transition from RN-AdS black hole to
hairy black hole, which is dual to a superconducting phase.
To consider the near-horizon geometry of an extremal RN-AdS black hole, we introduce
the new coordinates
t=Ligg,\ ', T =714+ AT (3.2)

and let A — 0. Under this limit and taking
Liis, = 6L + 72, (3.3)

we can get the near-horizon solution with metric

2 2 2 AP 2 502
dSh = LAng —r4dt + Tq + T+d927 (34)
and Maxwell potential
Aqdz® = L3 4s,Qcry *Tdt = Q.rdt. (3.5)

Here @C = L2AdS2chjr2. Applying this near-horizon limit and taking the linear pertur-
bation of the scalar field as d¢) = e~"!¥, the equation (3.1) reduces to the linear order
Klein-Gordon equation for a scalar field around an AdSs background

0 = 0-(7F20-Ty) + [(w + q@cF)Q 72— m2Ls, | Yo(r), (3.6)

with a Maxwell potential A= Qc?. The above equation gives the asymptotic behavior of

£ o1+ AmZ L s, (3.7)

mzﬁLidSQ = WQLidsg - q2@2 (3.8)
The IR instability occurs when the effective mass (3.8) of the scalar field near horizon
violates the AdSs BF bound

the scalar field near the horizon.

—

Uy~ 7D 47D, with Ay —

N =

where

1
megLias, < R (3.9)
indicating that an extremal RN-AdS is unstable if the charge of the scalar field obeys [18]
31 o] |6+ (ry/L)2
44202 > |mPL? + =+ = L 2] ) 1
q fl |:m —+ 9 + 4(T+/ ) 3+ (7’+/L)_2 (3 O)
Taking the large RN-AdS limit r; /L — oo, we have
3 1
LPI2 > 2 <m2L2 + 2) — AL /1) 4 O(r4 /1) ). (3.11)



This indicates a large RN-AdS black hole with sufficiently large g suffers from the IR
instability. However, under the opposite limit ;. /L — 0, it is not possible to trigger the
IR instability since the AdSs BF bound is hard to be violated

4¢° L2 > i(m/L)_Q +0(1). (3.12)

We have expounded that the IR instability occurs to an extremal RN-AdS black hole
in which the effective mass of the scalar field near the horizon violates the BF bound in
AdSs. Due to the continuity of geometrical configuration, this instability is expected to
extend to near-extremal configuration. Moreover, we show that the IR instability is more
likely to happen to the large RN-AdS black hole. Particularly, there is a near horizon
scalar condensation mechanism for the planar RN-AdS black hole, which can be regarded
as the spherical RN-AdS black hole in the limit ;. /L — co. However, the IR instability is
suppressed for small RN-AdS black hole, which is different from the superradiant instability,
as we will discuss in the next subsection.

3.2 Superradiance condition

Superradiance is one of the most famous mechanisms that destabilize black holes. Under
superradiant scattering, waves with suitabe tuned oscillating frequency scattering off the
black hole can be amplified. If the waves are confined, the outgoing waves can be reflected
back inwards and interact with the black hole repeatedly, such that the black hole keeps
converting energy to the wave and the wave amplitude grows exponentially, which drives
the system to become unstable. We will derive the superradiance condition for RN-AdS
black hole from the process of superradiant scattering.

We consider a mode solution of massive scalar field 6y = r~le™™'WU; with real fre-
quency w in the RN-AdS background. The linear order Klein-Gordon equation (3.1) can
be reduced to the ordinary differential equation

0=f (o) + [(w—qul)Z—m%—rlf’f Uy, (3.13)

where @ = w + qu. After using a new variable dr, = f~!dr, called the tortoise coordinate,
the above equation has the Schrédinger-like form

d2
dr?

0= Uy + V(r,o)¥;. (3.14)
Here V(r,w) is the effective potential. Considering a unit amplitude incident wave coming
from the AdS boundary and scattering off the potential with reflection and transmission
amplitudes A, and A, respectively, we can get the follow asymptotic solutions of the
equation (3.14)

A exp[—i(@ — qQrHr.], r—rg,

exp (—iwry) + Ascexp (iwry), 1 — 00.
Due to the real effective potential V' (r, ), it is easy to prove if a function ¥; solves the
equation (3.14) and then its complex conjugate function W7 is another linearly independent



solution. The Wronskian determinant between the two independent solutions ¥ and W7

d d
W = *
\I,ldr* Vi 1dr*

is conserved with respect to the variable r.. Evaluating the determinant (3.16) at the

Uy, (3.16)

horizon and AdS boundary respectively, we have
1— A |* = A P (@ — qQri "o (3.17)
The amplification of the reflection wave occurs if following condition is satisfied [11]:
0<w<qQry’. (3.18)
We will show the superradiance condition (3.18) is easy to satisfy for small RN-AdS
black hole with sufficiently large ¢. In the limit /L — 0, the effects of the black hole

may be neglected due to M,Q ~ ri < L. The linear order Klein-Gordon equation (3.1)
reduces to

0= (1472 L") + (L2 + 20 W 4 [@*(1 +r2L72) 7" —m?| 0, (3.19)

which describes a perturbation §vp = e "W of scalar field in pure AdS with a constant
Maxwell potential A; = u. By defining a new variable and a new radial function

zx=1+rL"2 U =a"L2F(), (3.20)
one can find the radial function F'(z) solves the hypergeometric equation
d? d
0=uz(1- m)@F(Q:) +y—(a+p+1)a] %F(m) — afF(z), (3.21)
where ] 1
azi(@L—i—A), Bzg(wL—A—i—?)), y=wL+1, (3.22)

and A is defined in (2.2). After imposing the no-source boundary condition, namely Yy =
0 in (2.2), the equation (3.19) has the normalizable solutions

1 1
U, = Az 2AF (2 (A+dnl), 5 (A=waL); A= ;x_1> , (3.23)

with the frequency spectrum
wpL = A+ 2n, (3.24)

where A is an arbitrary amplitude and n is a non-negative integer. Thus, there is a
set of normal modes of a complex scalar field in the limit r, /L — 0, which satisfy the
superradiance condition

0<A+2n<qQri'L, (3.25)

with sufficiently large q.

In the previous subsection, we have seen that a large RN-AdS black hole is unstable
to the IR instability. However, it is suppressed for small RN-AdS black holes. In the
present subsection, for the small RN-AdS black hole limit, we have found there may exist
a series of modes satisfying the superradiance condition. We therefore expect these modes
to be unstable. It has been proved in [18, 54] using matched asymptotic expansions. At
high order the frequency will have a positive imaginary part if the mode satisfies the
superradiance condition, which signals exponential growth in nonlinear evolution.



3.3 Quasi-normal mode

The IR instability and superradaint instability of RN-AdS black hole have been found
analytically in the limit ry /L — oo and r4 /L — 0, respectively. In the present subsection,
we will further investigate these two instability numerically to reveal their behavior away
from the limit, similar works can be found in [28, 54-58].

There are numerous methods to calculate the quasi-normal modes of the black hole
perturbation, such as the WKB method, the continued fraction method, the asymptotic
iteration method, the generalized eigenvalue method and so on [58]. In this work, we use
the continued fraction method to solve the eigenvalue problem of the perturbation equation.
Comparing with other numerical method, the continued fraction method is considered to
be the most accurate one [59]. We will begin with the description of the continued fraction
method and then give the numerical results for RN-AdS black hole in various situations.

In spherically symmetric background, we consider a mode of the probe scalar field with
51 = e~"™!P. The linear order Klein-Gordon equation (3.1) has the form

0=r"2 (r2f¢")/ + {(@ - qu_1)2 f- mQ} o. (3.26)

Note that now we consider the system as an eigenvalue problem and w = w+ qu is complex.
After imposing the ingoing condition at the horizon and the no-source condition at the AdS
boundary, the asymptotic solution of above equation is

_ Ny
r—r , T =T,
o ) * (3.27)
A, T — 00,
where
Ny = —iL*ry (row — qQ) [(3r2 + 2ryr— + 12 + L) (ry —r_)] 7t (3.28)

In the continued fraction method, we need to expand the radial function as a power series

0 n
r—r
B(r) = (r — r V(4 — p JA-Ns +) ‘
(ry=(r—ry)"t(r—r-) Z an | = (3.29)

n=0
Then substituting (3.29) into (3.26), we can obtain a complicated recurrence relation on
sequence {a,}. Using Gaussian eliminations, the relation about the coefficients can be
reduced to the three-term recurrence relation

0= Clag + C;tay,

X g B (3.30)
0= Cnan + Cn+1an+1 + Cn+2an+2, n Z 0

where C% i = (1,0, —1) are the functions of the frequency w and the physical parameters
of RN-AdS black hole. Due to the convergence of the series (3.29), the continued fraction
can be constructed from the relation (3.30)

cricg
0=C0—- —1 20 (3.31)
CO % 011
1 CJ—-
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Figure 1. (a, ¢): the quasi-normal spectrums of large (r; = 5) and small (r; = 0.1) RN-AdS black
holes with o = Q/Q. = 0.9 and ¢ = 0, respectively. The shade of color represents the logarithmic
value of the continued fraction. Quasi-normal modes are marked at the red triangle. (b, d): the
quasi-normal modes of large (ry = 5) and small (r; = 0.1) RN-AdS black holes vary with the
paratemer g, respectively. The vertical dashed lines indicate the superradiance thresholds.

At this time, quasi-normal frequencies w are the roots of the polynomial on the right side
of the equation (3.31). The eigenvalue problem is transformed into a problem of finding
the roots of the polynomial in the complex plane. We search for these roots numerically
by plotting the logarithm of the continued fraction.

With fixed parameters a = Q/Q. = 0.9 and ¢ = 0, the quasi-normal spectrums of large
(ry = 5) and small (ry = 0.1) RN-AdS black holes are shown in figure la and figure lc,
respectively. For a large RN-AdS black hole, there is a tower of pure imaginary modes
extending below the real axis, which is called the zero-damped modes. The zero-damped
modes cluster onto the real axis in the extremal limit [25-27]. Based on the discussion in
subsection 3.1, we expect that the IR instability should appear as the coupling ¢ increases.
To verify this, we trace the trajectories of these modes as g varies in figure 1b. With



increasing ¢, the tower of zero-damped modes shifts to the right along with the superradi-
ance threshold. The first mode of the zero-damped modes progressively possesses a positive
imaginary part, which indicates the occurrence of IR instability. However, we found the
unstable mode is also within the superradiance threshold, which suggests that superradiant
instability also works for large RN-AdS black hole. We have verified other parameters of
the large black hole and got the same result: with non-zero ¢, all the unstable IR modes
satisfy the superradiance condition (3.18). For small RN-AdS black hole, there is further a
branch of AdS modes besides zero-damped modes, which reduces to the normal modes of
global AdS in the limit r; — 0 [18, 54]. As ¢ increases in figure 1d, the AdS modes grad-
ually lag behind the movement of the superradiance threshold and become unstable. This
is exactly the superradiant instability induced by the AdS modes that we expected in the
subsection 3.2. With sufficiently large ¢, the first mode of the zero-damped modes will also
become unstable. But the value of ¢ here is much larger than in the case of large RN-AdS
black hole, which shows the IR instability is harder to occur for small RN-AdS black hole.

In conclusion, the dominant unstable modes for large and small RN-AdS black holes
come from the zero-damped modes and AdS modes, respectively. Moreover, they both
trigger the superradiant instability since the superradiance condition is alway satisfied
when ¢ # 0. However, the IR instability prefers large RN-AdS black hole and is suppressed
for small RN-AdS black hole.

4 Nonlinear evolution

Based on the results of the linear analysis, we further investigate the nonlinear dynamics in
this section. The system of equations (2.3), (2.5a) and (2.5b) is solved numerically to reveal
the processes of scalarization and descalarization, which occur under reflecting boundary
conditions and time-dependent source boundary conditions, respectively. For more details
about the numerical procedure, we refer the reader to appendix A.

In order to reveal the relationships between the evolution of physical quantities and
time-dependent sources, we begin with a description of Ward-Takahashi identity in sub-
section 4.1. Then, we construct the charged hairy black hole according to the two types of
instability of RN-AdS in subsection 4.2. Last and foremost, the process of descalarization
is realized by opening the source of the scalar field, which is introduced in subsection 4.3.

4.1 Ward-Takahashi identity

From holography, we are required to renormalize the bulk action by adding the following
boundary terms [60-62]

2380 = [ do'v=gL+2 [ drty=k - [ doy=(1+ ROl +E), (D)

where R[v] is the Ricci scalar associated with the boundary induced metric 7, and K is the
trace of extrinsic curvature K, = ygvany with n, the outward normal vector field to the
boundary. According to the AdS/CFT correspondence, such a gravity system corresponds

~10 -



to a boundary conformal field theory, where the operators of the fields are defined as the
scalar operator:

=—= lim r [w +nH (D)), (4.2)

the electric current:

3

ren 1
5 = —— lim rn, FH", (4.3)
r—00 ﬂ 0A; 2 r—oo

the Brown-York tensor:

7 0Sren

. 1
<TZ]> 2,%4 rlggo \/» 5723 = Tlig)lor {G['y]w - Kij — (2 - K + 2‘¢|2> 'Yij:| . (4.4)

Here G[v];; is the Einstein tensor associated with ;;. Then the variation of the renormal-
ized on-shell action has the form

K308k = [ d'a\ /= ( 5 () 691y + (1) 64,0y + (0) 80y + (O >*5¢§0)), (4.5)

where the subscripts denote the coefficients of the leading order term in the asymptotic
behavior at the boundary. Note that the variation with respect to the bulk fields gives rise
to the field equations (2.3), (2.5a) and (2.5b).

Every kind of invariance preserved by the renormalized on-shell action corresponds to
a constraint on the operators of the fields. One of them is the U(1) gauge invariance

0A; = V0, 6§ =iqO, (4.6)
which gives the conservation formula for the electric current
Vi () = iq () (0) = ¥y (O)") (4.7)
Another conservation formula is for the energy-momentum tensor
VI(Ty;) = Fi <Jj> +(0) Ditpy +(O)" (Dithoy)", (4.8)
which is derived from the diffeomorphism invariance
0T = £eqY, GA; = £eAi, S = £, (4.9)

where £¢ is the Lie derivative with respect to an arbitrary vector field €' tangent to the
boundary.

With the ansatz (A.1) and the boundary conditions (A.6), the U(1) charge and energy
of the system have the form

(") = %Q, (4.10a)
(Tye) = 2M — 41 (O) — 47 (O)", (4.10b)
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v

(b)

Figure 2. The evolution of the configurations of the modulus of the complex scalar fields with the
same parameters « = Q/Q. = 0.9 and ¢ = 8 during scalarization process. The values of the outer
horizon radius of the RN-AdS black holes as the initial data are ry = 1 (left), r4 = 0.1 (right),
respectively.

where the symbols ) and M represent electric charge and ADM mass, respectively. From
the Ward-Takahashi identities (4.7) and (4.8), we can obtain the relationships between
above physical quantities and the source of the scalar field 11 in (A.6a)

9Q = 2iq (11 (0) — 7 (0)"), (4.11a)
Ot (Ty) = — (O) Dyapy — (O)* (Dyapy)*. (4.11Db)

When the scalar source disappears, the above quantities are conserved throughout the
evolution.

4.2 Scalarization

The nonlinear dynamics of the small and large RN-AdS black holes has been studied
in [17] and [28], respectively. Their final states of evolution share similar properties. A
harmonically oscillating complex scalar field is generated from the unstable RN-AdS black
hole background. The electric charge and mass are extracted from the black hole by the
scalar field. With larger ¢, the scalar condensate is farther away from the black hole
and carries more electric charge. In this subsection, we only construct the hairy black
hole in preparation for the descalarization process. For more details on the dynamics in
scalarization, please refer to the above two references.

Without loss of generality, we take the large (ry = 1)! and small (7 = 0.1) RN-AdS
black holes with the same parameter « = Q/Q. = 0.9 as the background solutions. As ¢

! A large RN-AdS black hole generally means that its event horizon radius is larger than the AdS radius.
Here we refer to the RN-AdS black hole whose dominant unstable mode originates from the zero-damped
modes as a large RN-AdS black hole. In order to highlight the effect of the scalar source on the black hole,
we avoid picking situations where the physical parameters (the electric charge and ADM mass) are too large.
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increases, the dominant unstable modes of them come from the zero-damped modes and
AdS modes, respectively. For the initial data of scalar field, we choose a Gaussion-like
perturbation in the form of ¢ = 107%2%(1 — 2)%exp [-50(z — 0.5)?] with a coordinate
compactification z = =1 such that the radial direction is bounded in z € [0,1], where
the position of the apparent horizon is fixed at r, = 1 by the radial shift r - 7 =17+ A
preserved by the ansatz (A.1) during evolution.

The configurations of the modulus of the complex scalar fields as a function of time
with ¢ = 8 are illustrated in figure 2. As we see, in both cases, there is a scalar condensation
attached to the black hole in the final state of evolution. However, compared to the case
of large black hole, the dynamic process of convergence to the stationary hairy black hole
is less smooth for the small RN-AdS black hole case. During the evolution, the electric
charge Q and ADM mass M of the system are conserved due to the vanishing source of
scalar field 1, which is guaranteed by the Ward-Takahashi identities (4.11).

4.3 Descalarization

Due to the confining AdS boundary which prohibits matter escaping, the dynamics in
this spacetime essentially occur under the microcanonical ensemble as the electric charge
and energy of the system are conserved during evolution. A natural question which arises
is how to adjust the asymptotic behaviors of matter fields or metric fields at the AdS
boundary to induce changes of the electric charge and energy. As we can see from the
Ward-Takahashi identities (4.11), they are intrinsically kinetic in the presence of the scalar
source. Therefore, in this subsection, we take the challenge to study the nonlinear dynamics
for time-dependent source 1 (t) on the background solutions of charged hairy black holes.

We take the final states of the scalarization processes obtained in the previous subsec-
tion as the initial data of the quench processes. In the process of quench, we also need to
specify a time dependency for the scalar source. In fact, the scalar source can be seen as
an extra parameter in the phase space. In order to compare the properties of the initial
and final states of the quench process under the same value of the scalar source, we choose
the following families of quench

2
1 = Hexp [_(tﬁl())] ) (4.12)
where the parameter H is the strength of the quench and the source decays rapidly to zero
at late times.

To reveal the real-time dynamics of the descalarization process, we impose the
quench (4.12) with the strength H = 0.14 and H = 0.4 on the final state of figure 2a,
which corresponds to the case of large RN-AdS black hole. The time dependence of the
configuration of the modulus of the complex scalar field is shown in figure 3. As we can see
from figure 3a, the scalar field starts to oscillate when the source is present and gradually
increases in amplitude with the increase of the source. Eventually, the system reaches a
new equilibrium state as the source decays, which possesses less scalar condensation. For
stronger quench illustrated in figure 3b, the scalar field oscillates with greater amplitude
during quench process and completely subsides when the system reaches the final state,
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(a) (b)

Figure 3. The configurations of the modulus of the complex scalar fields as a function of time
during the quench process. Both initial data are the final state of figure 2a, which corresponds to
the case of large RN-AdS black hole. The only difference is that the strength of the quench are
H = 0.14 (left) and H = 0.4 (right), respectively.

leaving behind a bald black hole. We have checked that for greater strength than this,
the final state of evolution is always a bald black hole, leading to the conclusion that such
form of quench (4.12) will cause the charged hairy black hole to be descalaried. Actually,
other types of quench we experimented with, such as rectangular wave, also descalarize the
system.

In the process of quench, in addition to the dynamics of the scalar field, another
important result we expect to reveal is the evolution of the physical quantities of the system,
which is shown in figure 4. Similar to the behavior of the scalar field, the electric charge
(figure 4a) and energy (figure 4b) of the system also have the phenomenon of oscillation
with the appearance of the scalar source. And in general they evolve in opposite directions.
Compared with the initial state, the electric charge of the final state is reduced and the
energy is increased. Moreover, the stronger quench brings a larger amount of change to the
physical quantities of the initial and final states. Specially, in the case of H = 0.4, almost
all the electric charge possessed by the system are lost, which indicates the final state of
the evolution is a Schwarzschild-AdS black hole. Figure 4c once again clearly characterizes
the dynamic behavior of the scalar field from the perspective of the scalar operator. The
second law of black hole mechanics requires the entropy of the system never decreases in
dynamical processes. The figure 4d indicates that it is satisfied even in the case of temporal
dependence of scalar source.

In order to further reveal the effect of quench strength on the system, we draw the
variation of physical quantities of the final state of quench process with the quench strength
in figure 5, which can be roughly divided into three parts. In the region of weak quench
strength (H < 0.18), there is no significant change in the energy of the system. But the
electric charge is drastically reduced, and the scalar operator drops with it. We refer to
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Figure 4. The electric charge (a), energy (b), modulus of scalar operator (¢) and entropy (d) of the
system as a function of time during the quench process. The entropy is defined as S = 872%2(ry,),
where 47%.2(r;,) represents the area of the apparent horizon. The blue and orange lines represent
the cases where the quench strength is H = 0.14 and H = 0.4, respectively.

this region as the descalarization region where the scalar condensation of the final state is
sensitive to the quench strength. This is also the region where the entropy changes the most.
There is a threshold for quench strength (Hp =~ 0.18) where the system is descalarized as
a bald black hole. Note that the electric charge of the system is not completely lost at
the threshold, which indicates the final state is a RN-AdS black hole when the quench
strength is slightly larger than the threshold. In the second region (0.18 < H < 0.4), the
electric charge of the system continues to decrease with increasing quench strength until it
disappears completely. Actually, the variation of the electric charge with quench strength
is not monotonic, but oscillates and converges to zero, which is more obvious in the case
of small RN-AdS black hole shown in figure 6a. RN-AdS black hole is the only candidate
for this region. There is also a threshold for quench strength (Hg ~ 0.4) where the system
loses almost all electric charge, indicating the final state of evolution is a Schwarzschild-AdS
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Figure 5. The variation of electric charge (a), energy (b), modulus of scalar operator (¢) and
entropy (d) of the final state of the quench process with the quench strength.

black hole when the quench strength is greater than this threshold. In the region of strong
quench strength (H 2 0.4), only the Schwarzschild-AdS black hole is left, because the
system has only one degree of freedom, which is energy. As the quench strength continues
to increase, the energy of the Schwarzschild-AdS black hole rises significantly.

For the case of small RN-AdS black hole, there is a similar but different phenomenon.
We still impose the quench (4.12) on the final state of figure 2b and show the physical
quantities of the system vary with the quench strength in figure 6. As we can see from
figure 6a, the electric charge has an obvious oscillatory behavior with the increase of quench
strength, and converges to zero with sufficiently large H. Figure 6b indicates we are able to
extract energy from AdS space-time in the range of small quench strength. The intriguing
phenomenon shown in figure 6¢ is that as the strength H increases, the system re-scalarizes
again with the negative electric charge after it is fully descalarized. Eventually, the scalar
condensation disappears as the electric charge decays. At the same time, the entropy no
longer increases monotonically with H when the quench strength is small, which can be
seen from figure 6d.
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Figure 6. The electric charge (a), energy (b), scalar operator (c¢) and entropy (d) of the final state
of the quench process as a function of quench strength, where the initial data is the stationary hairy
black hole constructed by superradiant instability in figure 2b.

Based on the numerical results, we conclude that the charged hairy black hole can be
descalarized during quench process, where the scalar source is time-dependent. The final
state of evolution can be a hairy black hole with less scalar condensation, a RN-AdS black
hole or a Schwarzschild-AdS black hole, which depends on the quench strength. Specially,
with sufficient quench strength, the system always loses all the electric charge and evolves
to a Schwarzschild-AdS black hole.

5 Conclusion

In this paper, we first gave a brief description of the IR instability and superrandiant insta-
bility of the RN-AdS black hole, and then calculated the quasi-normal mode spectrum of the
RN-AdS black hole using the continued fraction method. In the cases of unstable modes, we
numerically simulated the nonlinear evolution under source-free boundary conditions to ob-
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tain the charged hairy black hole. Finally, we studied the real-time dynamics of the system
in the case of temporal dependence of scalar source, where the descalarization is achieved.

At the linear level, the quasi-normal mode spectrums of large and small RN-AdS black
holes are studied. There are two branches of modes: zero-damped modes and AdS modes,
which dominate the instabilities of large and small RN-AdS black holes,? respectively. The
IR instability is suppressed for the case of small RN-AdS black hole. Interestingly, all the
unstable modes satisfy the superradiance condition when ¢ 7 0 in either case, which indi-
cates the superradiant instability plays a role in both large and small RN-AdS black holes.

At the nonlinear level, these unstable modes grow and drive the system to a stationary
hairy black hole. To reveal the response of the hairy black hole to the scalar source,
we imposed a time dependent scalar source to the system. We found that the physical
quantities of the system (the electric charge, energy and scalar condensation) start to
oscillate with the appearance of the scalar source. However, the entropy always increases
monotonically with time, indicating that the second law of black hole mechanics is satisfied
in our cases. Eventually, as the scalar source decays, the system reaches a new stable state.
Given a quench of the form (4.12), the final state of evolution depends on the quench
strength. For the case of large RN-AdS black hole, as the quench strength increases,
the system will evolve to a hairy black hole with less scalar condensation, RN-AdS black
hole and Schwarzschild-AdS black hole, respectively. However, an interesting phenomenon
occurs in the case of small RN-AdS black hole. After the system is descalarized with the
increase of quench strength, it may be re-scalarized again, so that the above final states will
be repeated. But in either case, the Schwarzschild-AdS black hole is the ultimate victor
with sufficient quench strength.

In most of the previous papers, the dynamics in asymptotically AdS spacetime were
studied in the microcanonical ensemble as the electric charge and energy of the system are
fixed throughout the evolution. In this work, we investigate the fully nonlinear numerical
simulations of the charged hairy black hole in an open environment. And the results reveal
a novel descalarization mechanism. Our work underscores the influence of scalar source on
black holes and will shed lights into deep investigations of dynamical mechanisms in some
other gravity models. Especially, it is meaningful to seek a holographic interpretation for
the time-dependent scalar source and the descalarization process [16, 63—65]. In addition to
the source of scalar field, the response of the black hole to the source of metric field is also
worthy of attention. On the other hand, the frequency distribution of the quench in our
case is essentially centered within the superradiant threshold. That is to say, the results
cannot generalize the response of the superconducting phase to high-frequency quench in
the presence of superradiance. We leave these works for further research in the future.
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A Numerical procedure

For the nonlinear evolution, the approach in [66], which has been shown to be amenable to a
variety of gravitational dynamics problems in the asymptotically AdS spacetime, is used to
solve the coupled field equations numerically. We adopt the ingoing Eddington-Finkelstein
metric ansatz compatible with spherical symmetry

ds® = —2W (t,r)dt* + 2dtdr + S(t,r)2dQ3. (A1)

The form of the metric ansatz is preserved by a residual diffeomorphism: arbitrary radial
shift r — 7 = r + A, which is used to put the apparent horizon at a fixed radial position
during evolution. Since this choice makes the computational domain a fixed interval, the
fields can be conveniently discretized with pseudospectral methods.

For the Maxwell field, we take the gauge

Au(t,r)dxt = A(t,r)dt, (A.2)

and the complex scalar field ¥ = ¢ (¢, 7). In order to decouple the Einstein equations, the
derivative operator d; = 9y + W9,, which is the directional derivative along the outgoing
null geodesic, must be introduced.

With these preliminaries in hand, the field equations (2.3), (2.5a) and (2.5b) take the
following simple form.

Einstein equations:

0=x"+ %WPE, (A.3a)
/ 1 1 12 2 2 1
2(d, %Y 1
0wy 2EEL g Lt Re (ds — igdw) ()7 (A-30)
1
0=dyd, > —Wd, ¥+ §|d+w — iqAY|?%, (A.3d)

Maxwell equations:

0=A"+ 2A’§ — 2qIm [¢*¢'], (Ada)
0=d; A + 2A/d+7E + 2¢Im [¢* (dyp — igA)] (A.4Db)

Scalar equation:
0=[Z(dytp —iqAY)] +¢'d T + %iqA’Ew + X, (A.5)

where we use primes to denote radial differentiation with respect to r.

There is a simple and efficient integration strategy for the set of equations due to
the nested structure. Once given the data for the scalar field ¢ on the time slice ¢y,
eq. (A.3a) is a linear second order ordinary differential equation for the field 3, which
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can be successfully solved with appropriate boundary conditions. The next target is the
Maxwell field A determined by eq. (A.4a), whose coefficient and source term depend only
on the known values of field ¢ and Y. Next, the equations that need to be solved in
turn are egs. (A.3b), (A.5) and (A.3c), whose solutions give the fields dy, dy¢ and W
respectively. Since fields div and W are obtained, the scalar field 1) can be pushed to
the next time slice tg + dt by integrating in time for 0. The procedure is iterated until
the entire simulation is completed. There are two redundant equations (A.3d) and (A.4b),
which are used to detect numerical errors.

All is ready except for the boundary conditions. The asymptotic near-boundary be-
haviors of solutions to field equations take the form

P =1t 4 ar2 4 o(r73), (A.6a)
YA iwl\%fl +o(r?), (A.6D)
A=p—Qrt+o(r?), (A.6c)
ditb = —r + (@ — by — ) 1+ 0r ), (A.6d)
W= S+ A2+ g — il = 8 - Mr o), (A.6e)

The source of the scalar field v is a free parameter with respect to the field equations,
which is used to quench the system in this work, and the response of the scalar field
1o cannot be determined by the near-boundary analysis, whose value depends on the
solution throughout the bulk. The symbols @) and M represent electric charge and ADM
mass respectively. Now, we start to introduce the integral constants for solving the field
equations. First, for eq. (A.3a), the two integration constants are fixed by the first and
second terms in the asymptotic behavior (A.6b): ¥ ~ r + A. Second, the coefficients of
the asymptotic behavior of the field A (A.6¢) including the function p and electric charge
Q@ provide the two integration constants for eq. (A.4a), where p is set to zero by the U(1)
gauge freedom. Then, we use the apparent horizon condition d43(ry) = 0 to fix the single
integration constant in (A.3b). Next is eq. (A.5), whose single integration constant is fixed
by the coefficient of the subleading term in (A.6d), where 1)y can be extracted from the
asymptotic behavior of the scalar field (A.6a). Finally, for eq. (A.3c), we choose the gauge
such that the position of the apparent horizon is time invariant, which gives a boundary
condition for W at the horizon from (A.3d)

|di —igAYPPE
2(d, )

W(Th> = (A7)
Th
Besides the boundary condition (A.7) fixing one of the two integration constants, another

integration constant is fixed by the leading term in the asymptotic behavior (A.6e).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP? supports
the goals of the International Year of Basic Sciences for Sustainable Development.

—90 —


https://creativecommons.org/licenses/by/4.0/

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P.T. Chrusciel, J. Lopes Costa and M. Heusler, Stationary black holes: uniqueness and
beyond, Living Rev. Rel. 15 (2012) 7 [arXiv:1205.6112] [INSPIRE].

P. Bizon, Gravitating solitons and hairy black holes, Acta Phys. Polon. B 25 (1994) 877
[gr-qc/9402016] [INSPIRE].

M.S. Volkov and D.V. Gal’tsov, Gravitating non-Abelian solitons and black holes with
Yang-Mills fields, Phys. Rept. 319 (1999) 1 [hep-th/9810070] [INSPIRE].

C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int.
J. Mod. Phys. D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].

D.D. Doneva, S. Kiorpelidi, P.G. Nedkova, E. Papantonopoulos and S.S. Yazadjiev, Charged
Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor
theories, Phys. Rev. D 98 (2018) 104056 [arXiv:1809.00844] [INSPIRE].

H. Guo, X.-M. Kuang, E. Papantonopoulos and B. Wang, Horizon curvature and spacetime
structure influences on black hole scalarization, Eur. Phys. J. C' 81 (2021) 842
[arXiv:2012.11844] [NSPIRE].

H. Guo, S. Kiorpelidi, X.-M. Kuang, E. Papantonopoulos, B. Wang and J.-P. Wu,
Spontaneous holographic scalarization of black holes in Finstein-scalar-Gauss-Bonnet
theories, Phys. Rev. D 102 (2020) 084029 [arXiv:2006.10659] [INSPIRE].

Z.-Y. Tang, B. Wang, T. Karakasis and E. Papantonopoulos, Curvature scalarization of black
holes in f(R) gravity, Phys. Rev. D 104 (2021) 064017 [arXiv:2008.13318] [INSPIRE].

C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett. 112 (2014)
221101 [arXiv:1403.2757] [INSPIRE].

C. Herdeiro and E. Radu, Construction and physical properties of Kerr black holes with
scalar hair, Class. Quant. Grav. 32 (2015) 144001 [arXiv:1501.04319] [INSPIRE].

R. Brito, V. Cardoso and P. Pani, Superradiance: new frontiers in black hole physics, Lect.
Notes Phys. 906 (2015) pp.1 [arXiv:1501.06570] INSPIRE].

J.D. Bekenstein, Extraction of energy and charge from a black hole, Phys. Rev. D 7 (1973)
949 [INSPIRE].

N. Sanchis-Gual, J.C. Degollado, P.J. Montero, J.A. Font and C. Herdeiro, Ezplosion and
final state of an unstable Reissner-Nordstrom black hole, Phys. Rev. Lett. 116 (2016) 141101
[arXiv:1512.05358] [iNSPIRE].

N. Sanchis-Gual, J.C. Degollado, C. Herdeiro, J.A. Font and P.J. Montero, Dynamical
formation of a Reissner-Nordstrom black hole with scalar hair in a cavity, Phys. Rev. D 94
(2016) 044061 [arXiv:1607.06304] [INSPIRE].

K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium condensation process in a
holographic superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] INSPIRE].

M.J. Bhaseen, J.P. Gauntlett, B.D. Simons, J. Sonner and T. Wiseman, Holographic
superfluids and the dynamics of symmetry breaking, Phys. Rev. Lett. 110 (2013) 015301
[arXiv:1207.4194] [INSPIRE].

P. Bosch, S.R. Green and L. Lehner, Nonlinear evolution and final fate of charged anti-de
Sitter black hole superradiant instability, Phys. Rev. Lett. 116 (2016) 141102
[arXiv:1601.01384] [iNSPIRE].

- 21 —


https://doi.org/10.12942/lrr-2012-7
https://arxiv.org/abs/1205.6112
https://inspirehep.net/literature/1116240
https://arxiv.org/abs/gr-qc/9402016
https://inspirehep.net/literature/371581
https://doi.org/10.1016/S0370-1573(99)00010-1
https://arxiv.org/abs/hep-th/9810070
https://inspirehep.net/literature/477703
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://arxiv.org/abs/1504.08209
https://inspirehep.net/literature/1365542
https://doi.org/10.1103/PhysRevD.98.104056
https://arxiv.org/abs/1809.00844
https://inspirehep.net/literature/1692686
https://doi.org/10.1140/epjc/s10052-021-09630-7
https://arxiv.org/abs/2012.11844
https://inspirehep.net/literature/1837843
https://doi.org/10.1103/PhysRevD.102.084029
https://arxiv.org/abs/2006.10659
https://inspirehep.net/literature/1801894
https://doi.org/10.1103/PhysRevD.104.064017
https://arxiv.org/abs/2008.13318
https://inspirehep.net/literature/1814064
https://doi.org/10.1103/PhysRevLett.112.221101
https://doi.org/10.1103/PhysRevLett.112.221101
https://arxiv.org/abs/1403.2757
https://inspirehep.net/literature/1285446
https://doi.org/10.1088/0264-9381/32/14/144001
https://arxiv.org/abs/1501.04319
https://inspirehep.net/literature/1340046
https://doi.org/10.1007/978-3-319-19000-6
https://doi.org/10.1007/978-3-319-19000-6
https://arxiv.org/abs/1501.06570
https://inspirehep.net/literature/1341250
https://doi.org/10.1103/PhysRevD.7.949
https://doi.org/10.1103/PhysRevD.7.949
https://inspirehep.net/literature/82414
https://doi.org/10.1103/PhysRevLett.116.141101
https://arxiv.org/abs/1512.05358
https://inspirehep.net/literature/1410052
https://doi.org/10.1103/PhysRevD.94.044061
https://doi.org/10.1103/PhysRevD.94.044061
https://arxiv.org/abs/1607.06304
https://inspirehep.net/literature/1477395
https://doi.org/10.1007/JHEP07(2010)050
https://arxiv.org/abs/1005.0633
https://inspirehep.net/literature/854059
https://doi.org/10.1103/PhysRevLett.110.015301
https://arxiv.org/abs/1207.4194
https://inspirehep.net/literature/1122991
https://doi.org/10.1103/PhysRevLett.116.141102
https://arxiv.org/abs/1601.01384
https://inspirehep.net/literature/1414170

[18]

[19]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

0.J.C. Dias and R. Masachs, Hairy black holes and the endpoint of AdSs charged
superradiance, JHEP 02 (2017) 128 [arXiv:1610.03496] INSPIRE].

P. Basu, J. Bhattacharya, S. Bhattacharyya, R. Loganayagam, S. Minwalla and V. Umesh,
Small hairy black holes in global AdS spacetime, JHEP 10 (2010) 045 [arXiv:1003.3232]
[INSPIRE].

0.J.C. Dias, P. Figueras, S. Minwalla, P. Mitra, R. Monteiro and J.E. Santos, Hairy black
holes and solitons in global AdSs, JHEP 08 (2012) 117 [arXiv:1112.4447] [InSPIRE].

P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys.
144 (1982) 249 [InSPIRE].

S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D
78 (2008) 065034 [arXiv:0801.2977] INSPIRE].

S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys.
Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [InSPIRE].

C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42
(2009) 343001 [arXiv:0904.1975] INSPIRE].

H. Yang, F. Zhang, A. Zimmerman, D.A. Nichols, E. Berti and Y. Chen, Branching of
quasinormal modes for nearly extremal Kerr black holes, Phys. Rev. D 87 (2013) 041502
[arXiv:1212.3271] [INSPIRE].

A. Zimmerman and Z. Mark, Damped and zero-damped quasinormal modes of charged, nearly
extremal black holes, Phys. Rev. D 93 (2016) 044033 [arXiv:1512.02247] [INSPIRE].

P. Zimmerman, Horizon instability of extremal Reissner-Nordstrom black holes to charged
perturbations, Phys. Rev. D 95 (2017) 124032 [arXiv:1612.03172] [INSPIRE].

P. Bosch, S.R. Green, L. Lehner and H. Roussille, Fzxcited hairy black holes: dynamical
construction and level transitions, Phys. Rev. D 102 (2020) 044014 [arXiv:1912.05598]
[INSPIRE].

D.D. Doneva and S.S. Yazadjiev, New Gauss-Bonnet black holes with curvature-induced
scalarization in extended scalar-tensor theories, Phys. Rev. Lett. 120 (2018) 131103
[arXiv:1711.01187] [INSPIRE].

H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou and E. Berti, Spontaneous scalarization of
black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett. 120 (2018)
131104 [arXiv:1711.02080] [INSPIRE].

G. Antoniou, A. Bakopoulos and P. Kanti, Evasion of no-hair theorems and nowvel black-hole
solutions in Gauss-Bonnet theories, Phys. Rev. Lett. 120 (2018) 131102 [arXiv:1711.03390]
[INSPIRE].

P.V.P. Cunha, C.A.R. Herdeiro and E. Radu, Spontaneously scalarized Kerr black holes in
extended scalar-tensor-Gauss-Bonnet gravity, Phys. Rev. Lett. 123 (2019) 011101
[arXiv:1904.09997] [INSPIRE].

A. Dima, E. Barausse, N. Franchini and T.P. Sotiriou, Spin-induced black hole spontaneous
scalarization, Phys. Rev. Lett. 125 (2020) 231101 [arXiv:2006.03095] [INSPIRE].

C.A.R. Herdeiro, E. Radu, H.O. Silva, T.P. Sotiriou and N. Yunes, Spin-induced scalarized
black holes, Phys. Rev. Lett. 126 (2021) 011103 [arXiv:2009.03904| [INSPIRE].

- 29 —


https://doi.org/10.1007/JHEP02(2017)128
https://arxiv.org/abs/1610.03496
https://inspirehep.net/literature/1491370
https://doi.org/10.1007/JHEP10(2010)045
https://arxiv.org/abs/1003.3232
https://inspirehep.net/literature/849213
https://doi.org/10.1007/JHEP08(2012)117
https://arxiv.org/abs/1112.4447
https://inspirehep.net/literature/1082003
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6
https://inspirehep.net/literature/12266
https://doi.org/10.1103/PhysRevD.78.065034
https://doi.org/10.1103/PhysRevD.78.065034
https://arxiv.org/abs/0801.2977
https://inspirehep.net/literature/777762
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://arxiv.org/abs/0803.3295
https://inspirehep.net/literature/781888
https://doi.org/10.1088/1751-8113/42/34/343001
https://doi.org/10.1088/1751-8113/42/34/343001
https://arxiv.org/abs/0904.1975
https://inspirehep.net/literature/817857
https://doi.org/10.1103/PhysRevD.87.041502
https://arxiv.org/abs/1212.3271
https://inspirehep.net/literature/1207254
https://doi.org/10.1103/PhysRevD.93.044033
https://arxiv.org/abs/1512.02247
https://inspirehep.net/literature/1408724
https://doi.org/10.1103/PhysRevD.95.124032
https://arxiv.org/abs/1612.03172
https://inspirehep.net/literature/1502900
https://doi.org/10.1103/PhysRevD.102.044014
https://arxiv.org/abs/1912.05598
https://inspirehep.net/literature/1770467
https://doi.org/10.1103/PhysRevLett.120.131103
https://arxiv.org/abs/1711.01187
https://inspirehep.net/literature/1634415
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131104
https://arxiv.org/abs/1711.02080
https://inspirehep.net/literature/1634576
https://doi.org/10.1103/PhysRevLett.120.131102
https://arxiv.org/abs/1711.03390
https://inspirehep.net/literature/1635267
https://doi.org/10.1103/PhysRevLett.123.011101
https://arxiv.org/abs/1904.09997
https://inspirehep.net/literature/1730853
https://doi.org/10.1103/PhysRevLett.125.231101
https://arxiv.org/abs/2006.03095
https://inspirehep.net/literature/1799615
https://doi.org/10.1103/PhysRevLett.126.011103
https://arxiv.org/abs/2009.03904
https://inspirehep.net/literature/1815834

[35]

[38]

[39]

[40]

[43]

[44]

E. Berti, L.G. Collodel, B. Kleihaus and J. Kunz, Spin-induced black-hole scalarization in
FEinstein-scalar-Gauss-Bonnet theory, Phys. Rev. Lett. 126 (2021) 011104
[arXiv:2009.03905] [NSPIRE].

C.A.R. Herdeiro, E. Radu, N. Sanchis-Gual and J.A. Font, Spontaneous scalarization of
charged black holes, Phys. Rev. Lett. 121 (2018) 101102 [arXiv:1806.05190] [INSPIRE].

C.-Y. Zhang, Q. Chen, Y. Liu, W.-K. Luo, Y. Tian and B. Wang, Critical phenomena in
dynamical scalarization of charged black holes, Phys. Rev. Lett. 128 (2022) 161105
[arXiv:2112.07455] [NSPIRE].

J.L. Ripley and F. Pretorius, Dynamics of a Zy symmetric EdGB gravity in spherical
symmetry, Class. Quant. Grav. 37 (2020) 155003 [arXiv:2005.05417] [INSPIRE].

D.D. Doneva and S.S. Yazadjiev, Dynamics of the nonrotating and rotating black hole
scalarization, Phys. Rev. D 103 (2021) 064024 [arXiv:2101.03514] [INSPIRE].

W.E. East and J.L. Ripley, Dynamics of spontaneous black hole scalarization and mergers in
Einstein-scalar-Gauss-Bonnet gravity, Phys. Rev. Lett. 127 (2021) 101102
[arXiv:2105.08571] [iNSPIRE].

C.-Y. Zhang, P. Liu, Y. Liu, C. Niu and B. Wang, Dynamical charged black hole spontaneous
scalarization in anti-de Sitter spacetimes, Phys. Rev. D 104 (2021) 084089
[arXiv:2103.13599] [INSPIRE].

H.-J. Kuan, D.D. Doneva and S.S. Yazadjiev, Dynamical formation of scalarized black holes
and neutron stars through stellar core collapse, Phys. Rev. Lett. 127 (2021) 161103
[arXiv:2103.11999] NSPIRE].

W. Xiong, P. Liu, C. Niu, C.-Y. Zhang and B. Wang, Dynamical spontaneous scalarization in
FEinstein-Mazwell-scalar theory, Chin. Phys. C 46 (2022) 095103 [arXiv:2205.07538]
[INSPIRE].

W.-K. Luo, C.-Y. Zhang, P. Liu, C. Niu and B. Wang, Dynamical spontaneous scalarization
in Einstein-Mazwell-scalar models in anti-de Sitter spacetime, Phys. Rev. D 106 (2022)
064036 [arXiv:2206.05690] [INSPIRE].

H.O. Silva, H. Witek, M. Elley and N. Yunes, Dynamical descalarization in binary black hole
mergers, Phys. Rev. Lett. 127 (2021) 031101 [arXiv:2012.10436] [INSPIRE].

D.D. Doneva, A. Vané Vinuales and S.S. Yazadjiev, Dynamical descalarization with a jump
during a black hole merger, Phys. Rev. D 106 (2022) L061502 [arXiv:2204.05333] [INSPIRE].

M. Elley, H.O. Silva, H. Witek and N. Yunes, Spin-induced dynamical scalarization,
descalarization, and stealthness in scalar-Gauss-Bonnet gravity during a black hole
coalescence, Phys. Rev. D 106 (2022) 044018 [arXiv:2205.06240] InSPIRE].

F. Corelli, T. Ikeda and P. Pani, Challenging cosmic censorship in Einstein-Maxwell-scalar
theory with numerically simulated gedanken experiments, Phys. Rev. D 104 (2021) 084069
[arXiv:2108.08328] [INSPIRE].

H.-J. Kuan, A.G. Suvorov, D.D. Doneva and S.S. Yazadjiev, Gravitational waves from
accretion-induced descalarization in massive scalar-tensor theory, Phys. Rev. Lett. 129
(2022) 121104 [arXiv:2203.03672] [INSPIRE].

C.-Y. Zhang, Q. Chen, Y. Liu, W.-K. Luo, Y. Tian and B. Wang, Dynamical transitions in
scalarization and descalarization through black hole accretion, Phys. Rev. D 106 (2022)
L061501 [arXiv:2204.09260] [INSPIRE].

~ 93 -


https://doi.org/10.1103/PhysRevLett.126.011104
https://arxiv.org/abs/2009.03905
https://inspirehep.net/literature/1815837
https://doi.org/10.1103/PhysRevLett.121.101102
https://arxiv.org/abs/1806.05190
https://inspirehep.net/literature/1677896
https://doi.org/10.1103/PhysRevLett.128.161105
https://arxiv.org/abs/2112.07455
https://inspirehep.net/literature/1990068
https://doi.org/10.1088/1361-6382/ab9bbb
https://arxiv.org/abs/2005.05417
https://inspirehep.net/literature/1795898
https://doi.org/10.1103/PhysRevD.103.064024
https://arxiv.org/abs/2101.03514
https://inspirehep.net/literature/1840235
https://doi.org/10.1103/PhysRevLett.127.101102
https://arxiv.org/abs/2105.08571
https://inspirehep.net/literature/1863758
https://doi.org/10.1103/PhysRevD.104.084089
https://arxiv.org/abs/2103.13599
https://inspirehep.net/literature/1853447
https://doi.org/10.1103/PhysRevLett.127.161103
https://arxiv.org/abs/2103.11999
https://inspirehep.net/literature/1852873
https://doi.org/10.1088/1674-1137/ac70ad
https://arxiv.org/abs/2205.07538
https://inspirehep.net/literature/2082913
https://doi.org/10.1103/PhysRevD.106.064036
https://doi.org/10.1103/PhysRevD.106.064036
https://arxiv.org/abs/2206.05690
https://inspirehep.net/literature/2094918
https://doi.org/10.1103/PhysRevLett.127.031101
https://arxiv.org/abs/2012.10436
https://inspirehep.net/literature/1837485
https://doi.org/10.1103/PhysRevD.106.L061502
https://arxiv.org/abs/2204.05333
https://inspirehep.net/literature/2066003
https://doi.org/10.1103/PhysRevD.106.044018
https://arxiv.org/abs/2205.06240
https://inspirehep.net/literature/2080613
https://doi.org/10.1103/PhysRevD.104.084069
https://arxiv.org/abs/2108.08328
https://inspirehep.net/literature/1907910
https://doi.org/10.1103/PhysRevLett.129.121104
https://doi.org/10.1103/PhysRevLett.129.121104
https://arxiv.org/abs/2203.03672
https://inspirehep.net/literature/2048305
https://doi.org/10.1103/PhysRevD.106.L061501
https://doi.org/10.1103/PhysRevD.106.L061501
https://arxiv.org/abs/2204.09260
https://inspirehep.net/literature/2069850

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Y. Liu, C.-Y. Zhang, W.-L. Qian, K. Lin and B. Wang, Dynamic generation or removal of a
scalar hair, arXiv:2206.05012 [INSPIRE].

Y. Liu, C.-Y. Zhang, Q. Chen, Z. Cao, Y. Tian and B. Wang, The critical scalarization and
descalarization of black holes in a generalized scalar-tensor theory, arXiv:2208.07548
[INSPIRE].

C. Niu, W. Xiong, P. Liu, C.-Y. Zhang and B. Wang, Dynamical descalarization in
Einstein-Mazwell-scalar theory, arXiv:2209.12117 [InSPIRE].

N. Uchikata and S. Yoshida, Quasinormal modes of a massless charged scalar field on a
small Reissner-Nordstrom-anti-de Sitter black hole, Phys. Rev. D 83 (2011) 064020
[arXiv:1109.6737] [INSPIRE].

R.A. Konoplya, Decay of charged scalar field around a black hole: quasinormal modes of
R-N, R-N-AdS black hole, Phys. Rev. D 66 (2002) 084007 [gr-qc/0207028] [INSPIRE].

E. Berti and K.D. Kokkotas, Quasinormal modes of Reissner-Nordstrom-anti-de Sitter black
holes: scalar, electromagnetic and gravitational perturbations, Phys. Rev. D 67 (2003) 064020
[gr-qc/0301052] [INSPIRE].

K. Maeda, S. Fujii and J.-I. Koga, The final fate of instability of Reissner-Nordstrém-anti-de
Sitter black holes by charged complex scalar fields, Phys. Rev. D 81 (2010) 124020
[arXiv:1003.2689] [INSPIRE].

R.A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: from astrophysics to
string theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [InSPIRE].

C.-Y. Zhang, S.-J. Zhang and B. Wang, Charged scalar perturbations around
Garfinkle-Horowitz-Strominger black holes, Nucl. Phys. B 899 (2015) 37
[arXiv:1501.03260] [INSPIRE].

G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum
gravity, Phys. Rev. D 15 (1977) 2752 InSPIRE].

M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B
631 (2002) 159 [hep-th/0112119] [INSPIRE].

H. Elvang and M. Hadjiantonis, A practical approach to the Hamilton-Jacobi formulation of
holographic renormalization, JHEP 06 (2016) 046 [arXiv:1603.04485] [INSPIRE].

X. Gao, A.M. Garcia-Garcia, H.B. Zeng and H.-Q. Zhang, Normal modes and time evolution
of a holographic superconductor after a quantum quench, JHEP 06 (2014) 019
[arXiv:1212.1049] [INSPIRE].

A.M. Garcia-Garcia, H.B. Zeng and H.Q. Zhang, A thermal quench induces spatial
inhomogeneities in a holographic superconductor, JHEP 07 (2014) 096 [arXiv:1308.5398]
[INSPIRE].

X. Bai, B.-H. Lee, L. Li, J.-R. Sun and H.-Q. Zhang, Time evolution of entanglement entropy
in quenched holographic superconductors, JHEP 04 (2015) 066 [arXiv:1412.5500] [INSPIRE].

P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically
anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].

— 24 —


https://arxiv.org/abs/2206.05012
https://inspirehep.net/literature/2094442
https://arxiv.org/abs/2208.07548
https://inspirehep.net/literature/2136599
https://arxiv.org/abs/2209.12117
https://inspirehep.net/literature/2156673
https://doi.org/10.1103/PhysRevD.83.064020
https://arxiv.org/abs/1109.6737
https://inspirehep.net/literature/893330
https://doi.org/10.1103/PhysRevD.66.084007
https://arxiv.org/abs/gr-qc/0207028
https://inspirehep.net/literature/589848
https://doi.org/10.1103/PhysRevD.67.064020
https://arxiv.org/abs/gr-qc/0301052
https://inspirehep.net/literature/611655
https://doi.org/10.1103/PhysRevD.81.124020
https://arxiv.org/abs/1003.2689
https://inspirehep.net/literature/848954
https://doi.org/10.1103/RevModPhys.83.793
https://arxiv.org/abs/1102.4014
https://inspirehep.net/literature/890235
https://doi.org/10.1016/j.nuclphysb.2015.07.030
https://arxiv.org/abs/1501.03260
https://inspirehep.net/literature/1339243
https://doi.org/10.1103/PhysRevD.15.2752
https://inspirehep.net/literature/110328
https://doi.org/10.1016/S0550-3213(02)00179-7
https://doi.org/10.1016/S0550-3213(02)00179-7
https://arxiv.org/abs/hep-th/0112119
https://inspirehep.net/literature/568280
https://doi.org/10.1007/JHEP06(2016)046
https://arxiv.org/abs/1603.04485
https://inspirehep.net/literature/1427705
https://doi.org/10.1007/JHEP06(2014)019
https://arxiv.org/abs/1212.1049
https://inspirehep.net/literature/1205640
https://doi.org/10.1007/JHEP07(2014)096
https://arxiv.org/abs/1308.5398
https://inspirehep.net/literature/1250799
https://doi.org/10.1007/JHEP04(2015)066
https://arxiv.org/abs/1412.5500
https://inspirehep.net/literature/1334729
https://doi.org/10.1007/JHEP07(2014)086
https://arxiv.org/abs/1309.1439
https://inspirehep.net/literature/1252847

	Introduction
	Model
	Instability
	IR instability 
	Superradiance condition
	Quasi-normal mode

	Nonlinear evolution
	Ward-Takahashi identity
	Scalarization
	Descalarization

	Conclusion
	Numerical procedure

