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The black hole uniqueness theorem

All stationary, asymptotically flat black holes of the Einstein­Maxwell equations in
d = 4 dimensions are uniquely specified by their mass, angular momentum, and
electric charge, and have horizon topology S2

Evading the uniqueness theorem:

different spacetime asymptotics

additional matter fields

higher dimensions

In some cases, solutions with additional conserved quantities and other horizon topologies
can survive
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Black holes in AdS spacetime

In the background of AdS spacetime, the horizon topology of black holes is not
limited to S2

Solutions that approach a local AdS spacetime asymptotically can possess a horizon
with planar or hyperbolic topology

These “black holes” have been extensively studied, both analytically and numerically

In particular, the planar black branes are the main objects of interest due to the
AdS/CFT correspondence
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Holographic first­order phase transition

Homogeneous planar black hole −→ inhomogeneous planar black hole
[Attems et al., 2017, Janik et al., 2017]

These configurations do not possess an explicit
inhomogeneous external source

The final state spontaneously breaks translational
symmetry

In the context of holography, this is related to the
phase separation process in systems with
first­order phase transition
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What about spherical black holes?

Static black hole solutions with either only axial symmetry or no continuous spatial
symmetry are constructed in certain models
[Kichakova et al., 2016, Herdeiro and Radu, 2016, Herdeiro and Radu, 2020]

Are there static black holes with only axial symmetry in the absence of a winding
number and a spatially dependent external source?

Is there a dynamical pathway from a spherically symmetric black hole to a deformed
black hole?
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Einstein­scalar model

The Lagrangian density

L = R− 1

2
∇µϕ∇µϕ− V(ϕ) (2.1)

We set the AdS radius L to the unit and focus on a scalar field with the mass squared
m2 = −2 within the Breitenlohner­Freedman bound. Specifically, the scalar potential
is specified as

V(ϕ) = −6 cosh
(

ϕ√
3

)
− ϕ4

5
(2.2)

The Einstein equation and the scalar equation

Rµν −
1

2
Rgµν =

1

2
∇µϕ∇νϕ−

(
1

4
(∇ϕ)2 +

1

2
V(ϕ)

)
gµν

∇µ∇µϕ =
dV(ϕ)
dϕ

(2.3)
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Metric ansatz

We adopt the ingoing Bondi­Sachs­like coordinates
[Cao and He, 2013, He and Cao, 2015] with axial symmetry (all the fields are
functions of (v, z, θ)) and no rotation:

ds2 =
L2

z2
(−[fe−χ−eAξ2]dv2−2e−χdvdz−2ξeAdvdθ+eAdθ2+e−A sin2 θdφ2) (2.4)
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Advantages of numerical relativity under the Bondi­Sachs gauge

Simplicity of the formalism (to save our brainpower)

Efficiency of the numerical evolution (to save our computational resources)

Ability to be used in general complicated systems (collapse/scalarization with less
symmetry, AdS/CFT, ...)
How to illustrate?

Black hole dynamics in AdS (this talk)
Applied AdS/CFT (superfluid dynamics, holographic solids, AdS/QCD, ...)
Black hole dynamics in non­AdS and gravitational waves
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Asymptotic behavior of the scalar field

Near the AdS boundary (z = 0), the scalar field has the following asymptotic behavior

ϕ = ϕ1z+ ϕ2z2 + O(z3) (2.5)

The source ϕ1 is a boundary freedom

In the case of planar topology, the scalar source is only a scaling freedom

But for spherical topology, the different values of the source will result in the physical
scenarios with substantial distinctions
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Static solutions with spherical symmetry

ξ and A are turned off, and χ, f, and ϕ are only functions of z
The equations of motion

χ′ =
z
4
ϕ′2, (2.6)(

f
z3

)′
=

L2

2z4
e−χV(ϕ)− 1

z2
e−A−χ, (2.7)

z2

2

(
fϕ′

z2

)′
=

L2

2z2
e−χ dV(ϕ)

dϕ
. (2.8)

In the computational domain [0, z0] of the z coordinate, the boundary conditions

χ|z=0 = 0

f|z=z0 = f0

ϕ′|z=0 = ϕ1

(2.9)
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Static solutions with spherical symmetry

The radial position of the event horizon zh is determined by the condition

f(zh) = 0 (2.10)

Once the spacetime geometry has been determined, one can easily extract the energy
density and the temperature of the gravitational system:

ε = −f3 +
ϕ1ϕ2

6
, T =

|f′(zh)|
4π

(2.11)

where f3 denotes the coefficient of the cubic term in the asymptotic expansion of the
field f near the boundary
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Phase diagram

The resulting thermodynamic relation for a scalar source ϕ1 = 2

0.35 0.40 0.45 0.50 0.55
T

2

0

2

4

6

8

10

12

The spinodal region lies between two turning
points

Due to the negative specific heat, the equilibrium
states located in such a spinodal region are
thermodynamically unstable

In the case of planar topology,
thermodynamically unstable states are also
dynamically unstable

In the spherical case, this is not necessarily true
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Linear perturbations

We consider the perturbations on the static, spherically symmetric background

gµν(v, z, θ) = g(0)µν (z) + δgµν(v, z, θ)

ϕ(v, z, θ) = ϕ(0)(z) + δϕ(v, z, θ)
(3.1)

To separate the angular dependence, we introduce the new variables

δΞ =
1

sin θ
∂θ(sin θδξ)

= ∂θδξ + cot θδξ

δa =
1

sin θ
∂θ(sin θ(∂θδA+ 2 cot θδA))

= ∂2
θδA+ 3 cot θ∂θδA− 2δA

(3.2)

All θ­dependence can be transformed to∆2 =
1

sin θ
∂
∂θ (sin θ ∂

∂θ )
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Perturbation decomposition

Since we are only considering the quasi­normal modes with an azimuthal number
m = 0, we can decompose the perturbations in the following form

δΨ = (δχ, δΞ, δf, δa, δϕ) = Ψ̃(z)e−iωvPl(cos θ) (3.3)

Numerical procedure
∂v → −iω

∂z → Differentiation matrix

∆2 → −l(l+ 1)

(3.4)

Once given a specified angular quantum number l, the quasi­normal frequencies ω
can be obtained by solving a generalized eigenvalue problem
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Quasi­normal spectra

The region of the states with dynamical instability is marked in orange in the phase diagram

4 2 0 2 4
Re( )

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Im
(

)

l = 0
l = 1
l = 2
l = 3
l = 4

For the state represented by the green dot, all
modes lie on or below the real axis, indicating the
dynamical stability at the linear level

6 4 2 0 2 4 6
Re( )

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Im
(

)

l = 0
l = 1
l = 2
l = 3
l = 4

For the state represented by the red dot, the
configuration are dynamically unstable under
axial perturbations with l = 1
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Axial perturbations

We introduce a θ­dependent perturbation to the scalar field, the form of which is
chosen as a mixture of all modes without loss of generality:

δϕ(z, θ) = ϕ0z2 exp
(
−10 sin2 θ

2

)
(4.1)

where ϕ0 indicates the amplitude of the perturbation

For the state represented by the green dot, the amplitude of the perturbation ranges
from ϕ0 = 0.1 to ϕ0 = 1

For the red dot, the range is ϕ0 = 0.001 to ϕ0 = 0.01
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Nonlinear equations of motion

χ′ =
z
4
(A′2 + ϕ′2) (4.2)(

eA+χ

z2
ξ′
)′

= − 1

z2
[(A+ χ)′θ +

2χθ

z
− (A′Aθ + ϕ′ϕθ) + 2 cot θA′] (4.3)(

f
z3

)′
=

ξθ
z3

+
L2

2z4
e−χV(ϕ) +

1

z2
[P− cot θ(Q− ξ

z
+

3e−A−χAθ

2
)− e−A−χ] (4.4)

Ȧ′ − Ȧ
z
=

z2

2

(
fA′ − ξAθ

z2

)′
+

(e−A−χAθ − ξA′)θ
2

+ P+ cot θ(Q− ξA′

2
) (4.5)

ϕ̇′ − ϕ̇

z
=

z2

2

(
fϕ′ − ξϕθ

z2

)′
+

(e−A−χϕθ − ξϕ′)θ
2

− L2

2z2
e−χ dV(ϕ)

dϕ
(4.6)

+ cot θ(e
−A−χϕθ

2
− ξϕ′

2
)
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Evolution scheme

Where P and Q are auxiliary variables

P =
eA+χ

4
ξ′2 +

ξθ
z
−

ξ′θ
2

− e−A−χ

4
(2Aθχθ + χ2

θ − ϕ2
θ) +

(e−A−χ)θθ
2

Q =
ξ′

2
− ξ

z
+

e−A−χχθ

2

(4.7)

There is a systematic and efficient integration strategy to solve these equations, which
benefits from their nested structure

Initial time slice: A, ϕ (4.2)−−→ χ
(4.3)−−→ ξ

(4.4)−−→ f (4.5), (4.6)−−−−−→ Ȧ, ϕ̇ −→ next time slice

Boundary conditions at z = 0: energy and momentum conservation of the boundary
system
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Discretization in the angular direction

In the θ direction, we extend the coordinate range from [0, π] to [−π, π], such that the
periodic boundary condition can be employed with Fourier pseudospectral
discretization instead of the traditional Chebyshev one for θ ∈ [0, π]. This method has
the following advantages:

Avoid dealing with boundary conditions at the north and south poles
Greatly improve numerical efficiency and stability in the dynamical evolution

On the other hand, we utilize an even number of Fourier grid points, denoted asM,
ranging from −π + π/M to π − π/M to avoid the coordinate singularity at the north
and south poles
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Apparent horizon

For axisymmetric configurations, determining the location of the apparent horizon
z = h(v, θ) requires the following condition

(∂θ + hθ∂z)(ξ + hθe−A−χ) + cot θ(ξ + hθe−A−χ) = −1

h
(f− h2θe

−A−χ) (4.8)

where all fields (except h and its θ­derivative) should be understood as functions of v,
z = h(v, θ), and θ

It is convenient to define the average entropy density as follows

s̄ =
∫ π
0 s(θ) sin θdθ∫ π

0 sin θdθ
=

∫ π

0

π

h2
sin θdθ (4.9)
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Time evolution for the stable state

Temporal and spatial dependence of the apparent horizon configuration for the initial state
represented by the green dot

Our numeric simulations demonstrate that the
axial perturbation damps over time, leaving a
spherically symmetric black hole

Confirming the dynamical stability, consistent
with the linear analysis
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Time evolution for the unstable state

Angular dependence of the apparent horizon configurations zh at different times for the
initial state represented by the red dot

v = 0 v = 50

v = 100 v = 200

0.8 1.0 1.2 The unstable mode with angular quantum
number l = 1 is excited under the axial
perturbation, leading to drastic changes in the
gravitational configuration

The apparent horizon radius rh = z−1
h decreases

at the north pole region and increases at the south
pole region, eventually leading to the formation
of a black hole with only axial symmetry
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Time evolution for the unstable state

Angular dependence of the final horizon configuration

0 /4 /2 3 /4
0.7

0.8

0.9

1.0

1.1

1.2

z h

v = 0
v = 200 A strong θ­dependence in the final state while the

scalar source remains isotropic throughout the
time evolution

Therefore, the spherical symmetry of the
gravitational system is broken spontaneously,
resulting in a dynamical deformation process
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The second law of black hole mechanics

Temporal evolution of the average entropy density for the initial state represented by the
red dot

0 25 50 75 100 125 150 175 200
v

7.4805

7.4810

7.4815

7.4820

7.4825

7.4830

7.4835

s

The second law of black hole mechanics asserts
that black hole entropy never decreases during
evolution

Although the apparent horizon exhibits distinct
dynamical behavior in different angular regions,
its total area always increases monotonically with
time

Confirming the satisfaction of the second law of
black hole mechanics in our cases
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Summary

Applying numerical relativity under the Bondi­Sachs gauge to an AdS spherical black
hole with a scalar field, we achieve:

A spinodal region is discovered in the phase diagram for static solutions with spherical
symmetry
We identify unstable quasi­normal modes for certain non­zero angular quantum numbers
in some states located in the spinodal region
Axial scalar perturbations in nonliear dynamical evolution lead to the emergence of
deformed black holes, which spontaneously break spherical symmetry
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Outlook

Implications related to AdS/CFT?

How to extend to rotating black holes?

(hij) =

(
eA coshB sinhB sin θ

sinhB sin θ e−A coshB sin2 θ

)
(5.1)

How to extend to other asymptotics than AdS?
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Thank You!
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