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The black hole uniqueness theorem

All stationary, asymptotically flat black holes of the Einstein-Maxwell equations in
d = 4 dimensions are uniquely specified by their mass, angular momentum, and

electric charge, and have horizon topology S°

Evading the uniqueness theorem:
e different spacetime asymptotics
@ additional matter fields
@ higher dimensions

In some cases, solutions with additional conserved quantities and other horizon topologies

can survive
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Black holes in AdS spacetime

@ In the background of AdS spacetime, the horizon topology of black holes is not
limited to S?

@ Solutions that approach a local AdS spacetime asymptotically can possess a horizon

with planar or hyperbolic topology
o These “black holes” have been extensively studied, both analytically and numerically

o In particular, the planar black branes are the main objects of interest due to the
AdS/CFT correspondence
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Holographic first-order phase transition

Homogeneous planar black hole — inhomogeneous planar black hole
[Attems et al., 2017, Janik et al., 2017]

inhomogeneous external source

symmetry

first-order phase transition

Summary and outlook
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@ These configurations do not possess an explicit

o The final state spontaneously breaks translational

o In the context of holography, this is related to the

phase separation process in systems with
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What about spherical black holes?

@ Static black hole solutions with either only axial symmetry or no continuous spatial
symmetry are constructed in certain models
[Kichakova et al., 2016, Herdeiro and Radu, 2016, Herdeiro and Radu, 2020]

o Are there static black holes with only axial symmetry in the absence of a winding

number and a spatially dependent external source?

@ [s there a dynamical pathway from a spherically symmetric black hole to a deformed
black hole?
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Einstein-scalar model

@ The Lagrangian density
1
L=R~ VuV"'6 ~ 1(9) @.1)

@ We set the AdS radius L to the unit and focus on a scalar field with the mass squared

m? = —2 within the Breitenlohner-Freedman bound. Specifically, the scalar potential

is specified as

V(¢) = —6 cosh <j/b§) — qb; (2.2)

o The Einstein equation and the scalar equation

1 1 1 1
R/u/ — 38 = §vu¢vu¢ - <4(V¢)2 + 2V(¢)> 8uv

2
VIV = dI;Ef)

2.3)
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Metric ansatz

@ We adopt the ingoing Bondi-Sachs-like coordinates
[Cao and He, 2013, He and Cao, 2015] with axial symmetry (all the fields are
functions of (v, z, §)) and no rotation:

2 LQ(

ds [fe X —e€2)dv? — 2e X dvdz — 26 dvdf + e db? + e sin? 0dp?) (2.4)
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Advantages of numerical relativity under the Bondi-Sachs gauge

o Simplicity of the formalism (to save our brainpower)
e Efficiency of the numerical evolution (to save our computational resources)

@ Ability to be used in general complicated systems (collapse/scalarization with less
symmetry, AdS/CFT, ...)
e How to illustrate?

o Black hole dynamics in AdS (this talk)
e Applied AdS/CFT (superfluid dynamics, holographic solids, AdS/QCD, ...)
e Black hole dynamics in non-AdS and gravitational waves
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Asymptotic behavior of the scalar field

@ Near the AdS boundary (z = 0), the scalar field has the following asymptotic behavior
¢ = 1z + ¢z’ + O(2°) (2.5)

@ The source ¢, is a boundary freedom
@ In the case of planar topology, the scalar source is only a scaling freedom

@ But for spherical topology, the different values of the source will result in the physical

scenarios with substantial distinctions
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Static solutions with spherical symmetry

o ¢ and A are turned off, and Y, f, and ¢ are only functions of z

@ The equations of motion

X 7¢/27
L2 1
(£) = Eemo- b
2 (f) L2 dV(9)
2 272 dp
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(2.6)

2.7)

(2.8)

@ In the computational domain [0, zg] of the z coordinate, the boundary conditions

X|z=0 =0
le:ZO :fO
¢/|z:0 - ¢1

2.9)
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Static solutions with spherical symmetry

o The radial position of the event horizon zj, is determined by the condition

flz) =0 (2.10)

@ Once the spacetime geometry has been determined, one can easily extract the energy

density and the temperature of the gravitational system:

L 0oz g G 2.11)

e= 6 4

where f3 denotes the coefficient of the cubic term in the asymptotic expansion of the

field fnear the boundary
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Phase diagram

The resulting thermodynamic relation for a scalar source ¢; = 2

o The spinodal region lies between two turning

points

0 @ Due to the negative specific heat, the equilibrium
states located in such a spinodal region are

thermodynamically unstable

2 * @ In the case of planar topology,
’ /_) thermodynamically unstable states are also
B oo e dynamically unstable

o In the spherical case, this is not necessarily true
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Linear perturbations

@ We consider the perturbations on the static, spherically symmetric background

gu(v,2,0) = g,(?y) (2) + 6guv (v, 2,0)

3.1
6(v,2,0) = 00 (2) + 50(v,2,0)
@ To separate the angular dependence, we introduce the new variables
I R
0= = Sineag(sm 05¢)
= 0pd& + cot 05¢
1 (3.2)
d0a = ——0y(sin 0(9p0A + 2 cot 00A4))
sin 6

= 0304 + 3 cot 00p0A4 — 264

e All f-dependence can be transformed to Ay = L % (sin 0%)
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Perturbation decomposition

@ Since we are only considering the quasi-normal modes with an azimuthal number

m = 0, we can decompose the perturbations in the following form
o0 = (6,02, 8f, da, 6¢) = ¥(z)e “ Py(cos f) (3.3)

@ Numerical procedure

0, = —iw
0, — Differentiation matrix (3.4)
Ay — —I(I+1)

@ Once given a specified angular quantum number /, the quasi-normal frequencies w

can be obtained by solving a generalized eigenvalue problem
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Quasi-normal spectra

The region of the states with dynamical instability is marked in orange in the phase diagram
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For the state represented by the green dot, all For the state represented by the red dot, the
modes lie on or below the real axis, indicating the configuration are dynamically unstable under

dynamical stability at the linear level axial perturbations with [ = 1
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Axial perturbations

@ We introduce a #-dependent perturbation to the scalar field, the form of which is

chosen as a mixture of all modes without loss of generality:

5¢(z,0) = poz* exp (—10 sin? Z) 4.1

where ¢ indicates the amplitude of the perturbation

e For the state represented by the green dot, the amplitude of the perturbation ranges
from ¢g =0.1to g =1

@ For the red dot, the range is ¢¢g = 0.001 to ¢g = 0.01
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Y =S” 467 (4.2)

<e:X€’>/ =~ +x) + ? — (d'4g + ¢'¢p) + 2 cot 4] (4.3)

(5) =8+ sero+ Sip—cotoio- £+ 2574 — i)

A - j 22 i Z2£A9> + (e_A_XAg —4%0 4 by cotb(0 - 52’4/) (4.5)

& _f 22 (f¢’ 22§¢>9> N <e—A—x¢29 — &0 2LQZ exdz(f) “.6)
e

2 2
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Evolution scheme

@ Where P and Q are auxiliary variables

eAtx & e—A—x e—A—x
P=7§I2+§£—*€— (2A0X0+X3—¢§)+ﬂ
4 z 2 4 2 4.7
/ —A—x ( ’ )
Q_§_§+24;ﬁ

e There is a systematic and efficient integration strategy to solve these equations, which

benefits from their nested structure

(4.2) X (4.3) (4.4) (4.5), (4.6)

o Initial time slice: 4, ¢

§——f

@ Boundary conditions at z = 0: energy and momentum conservation of the boundary

A, ¢ —> next time slice

system
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Discretization in the angular direction

@ In the 4 direction, we extend the coordinate range from [0, ] to [—, 7], such that the
periodic boundary condition can be employed with Fourier pseudospectral
discretization instead of the traditional Chebyshev one for § € [0, 7r]. This method has
the following advantages:

e Avoid dealing with boundary conditions at the north and south poles
e Greatly improve numerical efficiency and stability in the dynamical evolution
@ On the other hand, we utilize an even number of Fourier grid points, denoted as M,
ranging from —7 + w/M to m — /M to avoid the coordinate singularity at the north

and south poles
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Apparent horizon

e For axisymmetric configurations, determining the location of the apparent horizon

z = h(v, 0) requires the following condition
) —A—x —A—x\ _ 1 2 —A—x
( o + hgaz)(f + hge ) —+ cot 0(5 + h@e ) = —z(f— hee ) (48)

where all fields (except 4 and its 6-derivative) should be understood as functions of v,
z="h(v,0),and 0
e It is convenient to define the average entropy density as follows

_ Jy s(0)sin6do o
= o 2T PRI [ T Sin6de 4.9
S [Tsin6do /0 2 o (4.9)
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Time evolution for the stable state

Temporal and spatial dependence of the apparent horizon configuration for the initial state

represented by the green dot

@ Our numeric simulations demonstrate that the
axial perturbation damps over time, leaving a

spherically symmetric black hole

o Confirming the dynamical stability, consistent

with the linear analysis
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Time evolution for the unstable state

Angular dependence of the apparent horizon configurations z; at different times for the

initial state represented by the red dot

. o " ”V:SO @ The unstable mode with angular quantum
number / = 1 is excited under the axial
perturbation, leading to drastic changes in the
gravitational configuration

v=100 v=200 @ The apparent horizon radius 7, = z;l decreases

- - at the north pole region and increases at the south
pole region, eventually leading to the formation
— N , of a black hole with only axial symmetry
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Time evolution for the unstable state

Angular dependence of the final horizon configuration

— =0
— v=200

@ A strong #-dependence in the final state while the
scalar source remains isotropic throughout the

time evolution

@ Therefore, the spherical symmetry of the

gravitational system is broken spontaneously,

7L : resulting in a dynamical deformation process

0 4 an 3al4 z
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The second law of black hole mechanics

Temporal evolution of the average entropy density for the initial state represented by the
red dot

@ The second law of black hole mechanics asserts

that black hole entropy never decreases during

230 evolution

74825

o Although the apparent horizon exhibits distinct

dynamical behavior in different angular regions,

74815

its total area always increases monotonically with

74810

74805 tlme

0 25 50 7 100 125 150 175 200

’ o Confirming the satisfaction of the second law of

black hole mechanics in our cases
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Summary

e Applying numerical relativity under the Bondi-Sachs gauge to an AdS spherical black
hole with a scalar field, we achieve:

e A spinodal region is discovered in the phase diagram for static solutions with spherical
symmetry

e We identify unstable quasi-normal modes for certain non-zero angular quantum numbers
in some states located in the spinodal region

o Axial scalar perturbations in nonliear dynamical evolution lead to the emergence of

deformed black holes, which spontaneously break spherical symmetry
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Outlook

o Implications related to AdS/CFT?

e How to extend to rotating black holes?

el cosh B sinh B sin 6

sinhBsin® e 4 coshBsin?0

(hyp) =

@ How to extend to other asymptotics than AdS?

Summary and outlook
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(5.1)
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